Publications

2024

[42] Mutations in CLCN6 as a Novel Genetic Cause of Neuronal Ceroid Lipofuscinosis. He H, Cao X, He F, Zhang W, Wang X, Peng P, Xie C, Yin F, Li D, Li J, Wang M, Klüssendorf M, Jentsch TJ, Stauber T, Peng J. (2024) Ann Neurol doi: 10.1002/ana.27002Abstract

[41] Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease. Polovitskaya MM, Rana T, Ullrich K, Murko S, Bierhals T, Vogt G, Stauber T, Kubisch C, Santer R, Jentsch TJ. (2024) J Biol Chem 3:107437Abstract

[40] Lysosomal enzyme trafficking: from molecular mechanisms to human diseases. Braulke T, Carette JE, Palm W. (2024) Trends Cell Biol 34(3):198-210. Abstract

[39] Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. Krumm L, Pozner T, Zagha N, Coras R, Arnold P, Tsaktanis T, Scherpelz K, Davis MY, Kaindl J, Stolzer I, Süß P, Khundadze M, Hübner CA, Riemenschneider MJ, Baets J, Günther C, Jayadev S, Rothhammer V, Krach F, Winkler J, Winner B, Regensburger M. (2024) Acta Neuropathol 147(1): 28Abstract

[38] Loss of the HOPS complex disrupts early-to-late endosome transition, impairs endosomal recycling and induces accumulation of amphisomes. van der Beek J, de Heus C, Sanza P, Liv N, Klumperman J. (2024) Mol Biol Cell 35(3):ar40. Abstract

[37] Human WIPI β-propeller function in autophagy and neurodegeneration. Proikas-Cezanne T, Haas ML, Pastor-Maldonado CJ, Schüssele DS. (2024) FEBS Lett 598(1):127-139. Abstract

2023

[36] Proteomic investigation of neural stem cell to oligodendrocyte precursor cell differentiation reveals phosphorylation-dependent Dclk1 processing. Hardt R, Dehghani A, Schoor C, Gödderz M, Cengiz Winter N, Ahmadi S, Sharma R, Schork K, Eisenacher M, Gieselmann V, Winter D. (2023) Cell Mol Life Sci 80(9):260. Abstract

[35] Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl-/H+ Exchanger ClC-7. Bose S, de Heus C, Kennedy ME, Wang F, Jentsch TJ, Klumperman J, Stauber T. (2023) Biomolecules 13(12):1799. Abstract

[34] The ABL-MYC axis controls WIPI1-enhanced autophagy in lifespan extension. Sporbeck K, Haas ML, Pastor-Maldonado CJ, Schüssele DS, Hunter C, Takacs Z, Diogo de Oliveira AL, Franz-Wachtel M, Charsou C, Pfisterer SG, Gubas A, Haller PK, Knorr RL, Kaulich M, Macek B, Eskelinen EL, Simonsen A, Proikas-Cezanne T. (2023) Commun Biol 6(1):872. Abstract

[33] A lysosome membrane regeneration pathway depends on TBC1D15 and autophagic lysosomal reformation proteins. Bhattacharya A, Mukherjee R, Kuncha SK, Brunstein ME, Rathore R, Junek S, Münch C, Dikic I. (2023) Nat Cell Biol doi: 10.1038/s41556-023-01125-9. Abstract

[32] CLCN7, a gene shared by autosomal recessive and autosomal dominant osteopetrosis. Stauber T, Wartosch L, Vishnolia S, Schulz A, Kornak U. (2023) Bone 168:116639. Abstract

[31] LAMTOR1 ubiquitination restricts its interaction with the vacuolar-type H+-ATPase, promotes autophagy and is controlled by USP32. Hertel A, Eimer S, Bremm A. (2023) Autophagy 1-2. doi: 10.1080/15548627.2023.2184958. Abstract

[30] Multi Cell Line Analysis of Lysosomal Proteomes Reveals Unique Features and Novel Lysosomal Proteins. Akter F, Bonini S, Ponnaiyan S, Kögler-Mohrbacher B, Bleibaum F, Damme M, Renard BY, Winter D. (2023) Mol Cell Proteomics 100509. doi: 10.1016/j.mcpro.2023.100509. Abstract

[29] Autophagy profiling in single cells with open source CellProfiler-based image analysis. Schüssele DS, Haller PK, Haas ML, Hunter C, Sporbeck K, Proikas-Cezanne T (2023) Autophagy 19(1):338-351. Abstract

2022

[28] USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction. Hertel A, Alves LM, Dutz H, Tascher G, Bonn F, Kaulich M, Dikic I, Eimer S, Steinberg F, Bremm A.(2022) Cell Rep 41(10):111653. Abstract

[27] The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Richards CM, Jabs S, Qiao W, Varanese LD, Schweizer M, Mosen PR, Riley NM, Klüssendorf M, Zengel JR, Flynn RA, Rustagi A, Widen JC, Peters CE, Ooi YS, Xie X, Shi PY, Bartenschlager R, Puscnik AS, Bogyo M, Bertozzi CR, Blish CA, Winter D, Nagamine CM, Braulke T, Carette JE (2022) Science eabn5648.doi: 10.1126/science.abn5648. Abstract

[26] SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Marrone L, Marchi PM, Webster CP, Marroccella R, Coldicott I, Reynolds S, Alves-Cruzeiro J, Yang ZL, Higginbottom A, Khundadze M, Shaw PJ, Hübner CA, Livesey MR, Azzouz M (2022) Hum Mol Genet 21:ddac063. doi:10.1093/hmg/ddac063. Abstract

[25] S-palmitoylation determines TMEM55B-dependent positioning of lysosomes. Rudnik S, Heybrock S, Saftig P, Damme M (2022) J Cell Sci 135:jcs258566. Abstract

[24] The ménage à trois of autophagy, lipid droplets and liver disease. Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T, Reggiori F (2022) Autophagy 18:50-72. Review. Abstract

2021

[23] Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. Soldati C, Lopez-Fabuel I, Wanderlingh LG, Garcia-Macia M, Monfregola J, Esposito A, Napolitano G, Guevara-Ferrer M, Scotto Rosato A, Krogsaeter EK, Paquet D, Grimm CM, Montefusco S, Braulke T, Storch S, Mole SE, De Matteis MA, Ballabio A, Sampaio JL, McKay T, Johannes L, Bolaños JP, Medina DL (2021) EMBO Mol Med doi: 10.15252/emmm.202013742. Abstract

[22] Proteomic Analysis of Niemann-Pick Type C Hepatocytes Reveals Potential Therapeutic Targets for Liver Damage. Balboa E, Marín T, Oyarzún JE, Contreras PS, Hardt R, van den Bosch T, Alvarez AR, Rebolledo-Jaramillo B, Klein AD, Winter D, Zanlungo S (2021) Cells 10:2159. Abstract

[21] The lysosomal membrane-export of metabolites and beyond. Rudnik S, Damme D (2021) FEBS J 288:4168-82. Review. Abstract

[20] Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1-dependent TFEB/TFE3 regulation. van der Welle REN, Jobling R, Burns C, Sanza P, van der Beek JA, Fasano A, Chen L, Zwartkruis FJ, Zwakenberg S, Griffin EF, Ten Brink C, Veenendaal T, Liv N, van Ravenswaaij-Arts CMA, Lemmink HH, Pfundt R, Blaser S, Sepulveda C, Lozano AM, Yoon G, Santiago-Sim T, Asensio CS, Caldwell GA, Caldwell KA, Chitayat D, Klumperman J (2021) EMBO Mol Med e13258.doi: 10.15252/emmm.202013258. Abstract

[19] Mouse models for hereditary spastic paraplegia uncover a role of PI4K2A in autophagic lysosome reformation. Khundadze M, Ribaudo F, Hussain A, Stahlberg H, Brocke-Ahmadinejad N, Franzka P, Varga RE, Zarkovic M, Pungsrinont T, Kokal M, Ganley IG, Beetz C, Sylvester M, Hübner CA (2021) Autophagy doi: 10.1080/15548627.2021.1891848. Abstract

[18] Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. Bose S, He H, Stauber T (2021) Front Cell Dev Biol 9:639231. doi: 10.3389/fcell.2021.639231. Abstract

[17] West Syndrome Caused By a Chloride/Proton Exchange-Uncoupling CLCN6 Mutation Related to Autophagic-Lysosomal Dysfunction. He H, Cao X, Yin F, Wu T, Stauber T, Peng J (2021) Mol Neurobiol doi: 10.1007/s12035-021-02291-3. Abstract

[16] Targeted Quantification of the Lysosomal Proteome in Complex Samples. Mosen P, Sanner A, Singh J, Winter D (2021) Proteomes 9(1):4. Abstract

2020

[15] A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl−/H+-Exchanger, Causes Early-Onset Neurodegeneration. Polovitskaya MM, Barbini C, Martinelli D, Harms FL, Cole FS, Calligari P, Bocchinfuso G, Stella L, Ciolfi A, Niceta M, Rizza T, Shinawi M, Sisco K, Johannsen J, Denecke J, Carrozzo R, Wegner DJ, Kutsche K, Tartaglia M, Jentsch TJ (2020) Am J Hum Genet 107(6):1062-1077. Abstract

[14] Comprehensive Draft of the Mouse Embryonic Fibroblast Lysosomal Proteome by Mass Spectrometry Based Proteomics. Ponnaiyan S, Akter F, Singh J, Winter D (2020) Sci Data 7(1):68. Abstract

[13] Uncoupling Endosomal CLC chloride/proton Exchange Causes Severe Neurodegeneration. Weinert S, Gimber N, Deuschel D, Stuhlmann T, Puchkov D, Farsi Z, Ludwig CF, Novarino G, López-Cayuqueo KI, Planells-Cases R, Jentsch TJ (2020) EMBO J 39(9):e103358. Abstract

[12] The FTLD Risk Factor TMEM106B Regulates the Transport of Lysosomes at the Axon Initial Segment of Motoneurons. Lüningschrör P, Werner G, Stroobants S, Kakuta S, Dombert B, Sinske D, Wanner R, Lüllmann-Rauch R, Wefers B, Wurst W, D’Hooge R, Uchiyama Y, Sendtner M, Haass C, Saftig P, Knöll B, Capell A, Damme M (2020) Cell Rep 30:3506-3519.e6. Abstract

[11] Systematic Comparison of Strategies for the Enrichment of Lysosomes by Data Independent Acquisition. Singh J, Kaade E, Muntel J, Bruderer R, Reiter L, Thelen M, Winter D (2020) J Proteome Res 19(1):371-81. Abstract

2019

[10] VPS41 recessive mutation causes ataxia and dystonia with retinal dystrophy and mental retardation by inhibiting HOPS function and mTORC1 signaling. van der Welle REN, Jobling R, Burns C, Sanza P, ten Brink C, Fasano A, Chen L, Zwartkruis FJ, Zwakenberg S, Griffin EF, van der Beek J, Veenendaal T, Liv N, Blaser S, Sepulveda C, Lozano AM, Yoon G, Asensio CS, Caldwell GA, Caldwell KA, Chitayat D, Klumperman J (2019) bioRxiv 2019; doi:10.1101/2019.12.18.867333.

[9] Lysosomal Integral Membrane protein-2 (LIMP-2/SCARB2) Is Involved in Lysosomal Cholesterol Export. Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong ZJ, Weng X, Ah Kim Y, Collins R, Trimble W, Pomès R, Privé GG, Annaert W, Schwake M, Heeren J, Lüllmann-Rauch R, Grinstein S, Ikonen E, Saftig P, Neculai D. (2019) Nat Commun 10(1):3521 Abstract

[8] ER-phagy and human diseases. (Review) Hübner CA, Dikic I (2019) Cell Death Differ doi: 10.1038/s41418-019-0444-0. Abstract

[7] A Mathematical Model of Lysosomal Ion Homeostasis Points to Differential Effects of Cl Transport in Ca2+ Dynamics. Astaburuaga R, Quintanar Haro OD, Stauber T*, Relógio A* (2019) Cells 8(10). pii: E1263. Abstract (*These authors contributed equally to the work)

[6] Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. Schmidtke C, Tiede S, Thelen M, Käkelä R, Jabs S, Makrypidi G, Sylvester M, Schweizer M, Braren I, Brocke-Ahmadinejad N, Cotman SL, Schulz A, Gieselmann V, Braulke T (2019) J Biol Chem pii: jbc.RA119.008852. Abstract

[5] A mouse model for SPG48 reveals a block of autophagic flux upon disruption of adaptor protein complex five. Khundadze M, Ribaudo F, Hussain A, Rosentreter J, Nietzsche S, Thelen M, Winter D, Hoffmann B, Afzal MA, Hermann T, de Heus C, Piskor EM, Kosan C, Franzka P, von Kleist L, Stauber T, Klumperman J, Damme M, Proikas-Cezanne T, Hübner CA (2019) Neurobiol Dis 127:419-431. Abstract

[4] ATG-18 and EPG-6 are Both Required for Autophagy but Differentially Contribute to Lifespan Control in Caenorhabditis elegans. Takacs Z, Sporbeck K, Stoeckle J, Prado Carvajal MJ, Grimmel M, Proikas-Cezanne T (2019) Cells 8(3). pii: E236. Abstract

[3] Automated Detection of Autophagy Response Using Single Cell-Based Microscopy Assays. Mueller AJ, Proikas-Cezanne T (2019) Methods Mol Biol 1880:429-445. Abstract

2018

[2] Lysosomal proteome and secretome analysis identifies missorted enzymes and their non-degraded substrates in mucolipidosis III mouse cells.  Di Lorenzo G, Voltolini Velho R, Winter D, Thelen M, Ahmadi S, Schweizer M, De Pace R, Cornils K, Yorgan TA, Grüb S, Hermans-Borgmeyer I, Schinke T, Müller-Loennies S, Braulke T, Pohl S (2018) Mol Cell Proteomics 17:1612-26. Abstract 

[1] SGK1 Inhibits Autophagy in Murine Muscle Tissue. Zuleger T, Heinzelbecker J, Takacs Z, Hunter C, Voelkl J, Lang F, Proikas-Cezanne T (2018) Oxid Med Cell Longev 2018:4043726. Abstract