2024
[44] Mutations in CLCN6 as a Novel Genetic Cause of Neuronal Ceroid Lipofuscinosis. doi: 10.1002/ana.27002. Abstract
(2024) Ann Neurol[43] Gain-of-function variants in CLCN7 cause hypopigmentation and lysosomal storage disease. 3:107437. Abstract
(2024) J Biol Chem[42] Lysosomal enzyme trafficking: from molecular mechanisms to human diseases. Abstract
(2024) Trends Cell Biol 34(3):198-210.[41] Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. 147(1): 28. Abstract
(2024) Acta Neuropathol[40] Loss of the HOPS complex disrupts early-to-late endosome transition, impairs endosomal recycling and induces accumulation of amphisomes. Mol Biol Cell 35(3):ar40. Abstract
(2024)[39] Human WIPI β-propeller function in autophagy and neurodegeneration. FEBS Lett 598(1):127-139. Abstract
(2024)2023
[38] Proteomic investigation of neural stem cell to oligodendrocyte precursor cell differentiation reveals phosphorylation-dependent Dclk1 processing. 80(9):260. Abstract
(2023) Cell Mol Life Sci[37] Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl-/H+ Exchanger ClC-7. Biomolecules 13(12):1799. Abstract
(2023)[36] The ABL-MYC axis controls WIPI1-enhanced autophagy in lifespan extension. Commun Biol 6(1):872. Abstract
(2023)[35] A lysosome membrane regeneration pathway depends on TBC1D15 and autophagic lysosomal reformation proteins. Nat Cell Biol doi: 10.1038/s41556-023-01125-9. Abstract
(2023)[34] CLCN7, a gene shared by autosomal recessive and autosomal dominant osteopetrosis. (2023) Bone 168:116639. Abstract
[33] LAMTOR1 ubiquitination restricts its interaction with the vacuolar-type H+-ATPase, promotes autophagy and is controlled by USP32. (2023) Autophagy 1-2. doi: 10.1080/15548627.2023.2184958. Abstract
[32] Multi Cell Line Analysis of Lysosomal Proteomes Reveals Unique Features and Novel Lysosomal Proteins. (2023) Mol Cell Proteomics 100509. doi: 10.1016/j.mcpro.2023.100509. Abstract
[31] Autophagy profiling in single cells with open source CellProfiler-based image analysis. (2023) Autophagy 19(1):338-351. Abstract
2022
[30] Inositol triphosphate-triggered calcium release from the endoplasmic reticulum triggers lysosome biogenesis via TFEB/ TFE3. Malek M, Wawrzyniak AM, Ebner M, Puchkov D, Haucke V (2022) J Biol Chem 298: 101740.
[29] Inositol triphosphate signaling triggers lysosome biogenesis via calcium release from endoplasmic reticulum stores. Malek M, Haucke V (2022) Contact 5:251525642210970.
[28] USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction.
[27] The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science eabn5648.doi: 10.1126/science.abn5648. Abstract
(2022)[26] SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Hum Mol Genet 21:ddac063. doi:10.1093/hmg/ddac063. Abstract
(2022)[25] S-palmitoylation determines TMEM55B-dependent positioning of lysosomes. (2022) J Cell Sci 135:jcs258566. Abstract
[24] The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 18:50-72. Review. Abstract
(2022)2021
[23] Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. (2021) EMBO Mol Med doi: 10.15252/emmm.202013742. Abstract
[22] Proteomic Analysis of Niemann-Pick Type C Hepatocytes Reveals Potential Therapeutic Targets for Liver Damage. (2021) Cells 10:2159. Abstract
[21] The lysosomal membrane-export of metabolites and beyond. (2021) FEBS J 288:4168-82. Review. Abstract
[20] Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1-dependent TFEB/TFE3 regulation. (2021) EMBO Mol Med e13258.doi: 10.15252/emmm.202013258. Abstract
[19] Mouse models for hereditary spastic paraplegia uncover a role of PI4K2A in autophagic lysosome reformation. (2021) Autophagy doi: 10.1080/15548627.2021.1891848. Abstract
[18] Neurodegeneration Upon Dysfunction of Endosomal/Lysosomal CLC Chloride Transporters. (2021) Front Cell Dev Biol 9:639231. doi: 10.3389/fcell.2021.639231. Abstract
[17] West Syndrome Caused By a Chloride/Proton Exchange-Uncoupling CLCN6 Mutation Related to Autophagic-Lysosomal Dysfunction. (2021) Mol Neurobiol doi: 10.1007/s12035-021-02291-3. Abstract
[16] Targeted Quantification of the Lysosomal Proteome in Complex Samples. (2021) Proteomes 9(1):4. Abstract
2020
[15] A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl−/H+-Exchanger, Causes Early-Onset Neurodegeneration. (2020) Am J Hum Genet 107(6):1062-1077. Abstract
[14] Comprehensive Draft of the Mouse Embryonic Fibroblast Lysosomal Proteome by Mass Spectrometry Based Proteomics. (2020) Sci Data 7(1):68. Abstract
[13] Uncoupling Endosomal CLC chloride/proton Exchange Causes Severe Neurodegeneration. (2020) EMBO J 39(9):e103358. Abstract
[12] The FTLD Risk Factor TMEM106B Regulates the Transport of Lysosomes at the Axon Initial Segment of Motoneurons. (2020) Cell Rep 30:3506-3519.e6. Abstract
[11] Systematic Comparison of Strategies for the Enrichment of Lysosomes by Data Independent Acquisition. (2020) J Proteome Res 19(1):371-81. Abstract
2019
[10] VPS41 recessive mutation causes ataxia and dystonia with retinal dystrophy and mental retardation by inhibiting HOPS function and mTORC1 signaling. van der Welle REN, Jobling R, Burns C, Sanza P, ten Brink C, Fasano A, Chen L, Zwartkruis FJ, Zwakenberg S, Griffin EF, van der Beek J, Veenendaal T, Liv N, Blaser S, Sepulveda C, Lozano AM, Yoon G, Asensio CS, Caldwell GA, Caldwell KA, Chitayat D, Klumperman J (2019) bioRxiv 2019; doi:10.1101/2019.12.18.867333.
[9] Lysosomal Integral Membrane protein-2 (LIMP-2/SCARB2) Is Involved in Lysosomal Cholesterol Export. Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong ZJ, Weng X, Ah Kim Y, Collins R, Trimble W, Pomès R, Privé GG, Annaert W, Schwake M, Heeren J, Lüllmann-Rauch R, Grinstein S, Ikonen E, Saftig P, Neculai D. (2019) Nat Commun 10(1):3521 Abstract
[8] ER-phagy and human diseases. (Review) Hübner CA, Dikic I (2019) Cell Death Differ doi: 10.1038/s41418-019-0444-0. Abstract
[7] A Mathematical Model of Lysosomal Ion Homeostasis Points to Differential Effects of Cl− Transport in Ca2+ Dynamics. Astaburuaga R, Quintanar Haro OD, Stauber T*, Relógio A* (2019) Cells 8(10). pii: E1263. Abstract (*These authors contributed equally to the work)
[6] Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. Schmidtke C, Tiede S, Thelen M, Käkelä R, Jabs S, Makrypidi G, Sylvester M, Schweizer M, Braren I, Brocke-Ahmadinejad N, Cotman SL, Schulz A, Gieselmann V, Braulke T (2019) J Biol Chem pii: jbc.RA119.008852. Abstract
[5] A mouse model for SPG48 reveals a block of autophagic flux upon disruption of adaptor protein complex five. Khundadze M, Ribaudo F, Hussain A, Rosentreter J, Nietzsche S, Thelen M, Winter D, Hoffmann B, Afzal MA, Hermann T, de Heus C, Piskor EM, Kosan C, Franzka P, von Kleist L, Stauber T, Klumperman J, Damme M, Proikas-Cezanne T, Hübner CA (2019) Neurobiol Dis 127:419-431. Abstract
[4] ATG-18 and EPG-6 are Both Required for Autophagy but Differentially Contribute to Lifespan Control in Caenorhabditis elegans. Takacs Z, Sporbeck K, Stoeckle J, Prado Carvajal MJ, Grimmel M, Proikas-Cezanne T (2019) Cells 8(3). pii: E236. Abstract
[3] Automated Detection of Autophagy Response Using Single Cell-Based Microscopy Assays. Mueller AJ, Proikas-Cezanne T (2019) Methods Mol Biol 1880:429-445. Abstract
2018
[2] Lysosomal proteome and secretome analysis identifies missorted enzymes and their non-degraded substrates in mucolipidosis III mouse cells. Di Lorenzo G, Voltolini Velho R, Winter D, Thelen M, Ahmadi S, Schweizer M, De Pace R, Cornils K, Yorgan TA, Grüb S, Hermans-Borgmeyer I, Schinke T, Müller-Loennies S, Braulke T, Pohl S (2018) Mol Cell Proteomics 17:1612-26. Abstract
[1] SGK1 Inhibits Autophagy in Murine Muscle Tissue. Zuleger T, Heinzelbecker J, Takacs Z, Hunter C, Voelkl J, Lang F, Proikas-Cezanne T (2018) Oxid Med Cell Longev 2018:4043726. Abstract